SOLUTIONS 7 April 22, 2020

Exercise 1. A fair die is thrown repeatedly. Let X,, denote the sum of the first n throws.
Find

lim P(X,, is a multiple of 13).

n—oo

Solution. Let [i] be the set of numbers for the which the remainder of their division by 13 is
equal to 4, 1 =0,---12. If X, € [i], X, has equal probabilities to belong to [i + 1],--- ,[i + 6]
where [13] = [0], [14] = [1],---. So the transition matrix corresponding to X,, and the states
[0],---[12] is given by
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This matrix is doubly stochastic and so it has a uniform stationary distribution = = (1—13, Sy 1—13)

So we get
1

Tg.
Exercise 2. In each of the following cases determine whether the stochastic matrix P, which
you may assume is irreducible, is reversible:

(a)
I-p »p
qg 1l-—g¢q

nlggoP(X” is a multiple of 13) = nlggoP(X” €[0]) = mpq) =

(b)

(¢) I={0,1,--- ,N} and p;; = 0if [j —i| > 2
(d) I={0,1,2,---} and po1 = 1,psit1 =P, piji-1 =1 —pfori>1

(e) pij = pj; for all ¢, 7 in the state space S.



Solution. (a) Since the matrix is irreducible, we have that p,q > 0. The chain is reversible

()

if and only if it has a stationary distribution © = (71, m2) verifying the detailed balance

equations m Pjo = mo Po1. Since m1+mo = 1, we get the solution m; = HLE and my = 1-%;q/q'
q

We need to find 7 verifying
mp=m2(l —p), m(l—p)=msp, mp=m3(l—p), m +m+m3=1
We have a solution for this system of equations given by

_ 1 o p/(1—p)
1+p/A—p)+A—p)+p/1—p) > 1+p/A—p)+A—p) +p*/(1—p)

_ 1—p+p*/(1—p)
14+p/(1=p)+ 1 —p)+p*/(1-p)

1
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and so the chain is reversible whenever p = 1/2.

Write for any ¢ < N ¢; = P, ;—1, s = P;;, pi = P; ;1. The chain is again reversible since
we can find a solution for the system of equations

i
. - [Ti=oP;

TiPi = Tit+1qi+1 = Ti+1 = 70~ ;477 -
=145

The detailed balance equations in this case are given by
mo = (1 —p)m, mp=(1—p)mit1, i > 1.

i
From this we get m; = (l%p) . We need that }°; m; = 1 so we need that m; — 0 as i — oo.
We deduce that we have a solution for the system (and thus the chain is reversible) as

long as p < 1 — p which is equivalent to p < %

In this case the matrix is doubly stochastic and so it has a uniform stationary distribution
(m; = mj Vi,j € S). The detailed balance equations are clearly satisfied in this case and
so the chain is reversible.

Exercise 3. Two particles X and Y perform independent random walks on the graph shown
in the diagram. So for example, a particle at A jumps to B,C or D with equal probability %



Find the probability that X and Y ever meet at a vertex in the following cases:

(a)
(b)

X starts at A and Y starts at B

X starts at A and Y starts at E.

For I = B, D, let M; denote the expected time, when both X and Y start at I, until they
are once again both at I. Show that 9Mp = 16 Mp.

Solution. (a) From the graph, it is easy to see that both A and B have period 2, that means,

starting from A (resp. B), we can only return to A (resp. B) in an even number of steps.
Suppose that X and Y meet at C' without loss of generality, after k steps. Then there’s
a path of length k + 1 starting from A and returning to A, and a path of length k + 2
starting from B and returning to B. Since k+ 1 and k + 2 cannot be both even numbers,
this is a contradiction with the 2-periodicity of A and B. We deduce that X and Y will
never meet in this case and so the probability of them meeting is 0.

Writing G for the graph in the picture, we let G’ := G x G having vertices v1 X vy for any
vertices v, ve € G and (u1,u2) is connected to (v1,ve) if there’s an edge between u; and
v1 as well as between us and v9 in G.

So we can see the random walk as one particle (X,Y) moving on the graph G’. The
communication class of (A, E) is irreducible (by definition) and finite, hence the random
walk will reach all the states this class with probability 1. In particular, (C,C) belongs
to this class and so with probability 1 the two particles will meet at point C.

As seen in the previous exercise sheet, the stationary distribution of the random walk on the
graph is of the form m; = ﬁ for a vertex ¢ in the graph where d; indicates the degree
3 J

(number of neighbors) of i. In our case, (D, D) has degree 9 (since D has degree 3) and
(B, B) has degree 16 since B has degree 4.

Write G” for the subgraph consisting of the communication class of (D, D) (that contains
also (B, B)). So starting from (D, D), we need on average

Mp= L Zieards

W(D,D) 9

3



to return to (D, D). Similarly, the expected time to return to (B, B) starting from (B, B) is

given by
1 y " d y
MB _ _ ZJEG J )
T(B,B) 16

So we deduce that 9Mp = 16 Mp.

Exercise 4. A professor has N umbrellas. He walks to the office in the morning and walks
home in the evening. If it is raining he likes to carry an umbrella and if it is fine he does
not. Suppose that it rains on each journey with probability p, independently of past weather.
What is the long-run proportion of journeys on which the professor gets wet?

Solution. We start by writing the transition matrix corresponding to the number of umbrellas
at home after one day (2 journeys).

If he has 0 umbrellas at home, the probability that it stays 0 after 1 day is the probability
that it doesn’t rain on his way home from work, that is 1 —p, otherwise he wil have 1 umbrella
at home at the end of the day (with probability p).

Fix ¢ € {1,--- ;N — 1} and suppose that he has i umbrellas at home at the begining of the
day. The probability that the number of umbrellas becomes i — 1 at the end of the day is the
probabiity that it rains on his way to the office and it doesn’t rain on his way home, that is
p(1 — p). So the transition matrix on states 0,--- , N is given by

1—0p P 0 0 0

p(l—p) P*+(1—-p?* (A—-pp 0 0

p=1| O p(l=p) p*+(1-p? 1-pp 0
0 0 0 0 p1-p) PP+(1-p)

We need to find the stationary distribution of the chain verifying 7P = 7. This gives us the
following sstem of equations

mo(1 —p) + mip(1 — p) =

o + 1 (p? + (1 = p)?) + m2p(1 — p) =m

mi(L=p)p+mip1(p* + (1 —p)?) + mipop(1 —p) =my1, 1 <i< N -1

mN-1p(1 = p) + 7N (p® + (1 = p)) = 7N
We get from the first equation that m; = l%op. Using this, we get from the second equation
that mo = 1. Using this, we get finally that my = m = =7y = lﬂ_—op. Since Zév:o T =1,

we finally get

1 1
<i<N.

TO — T 71":7,17 ~
T Rl

If the professor has 0 umbrellas at home, he will get wet if it rains on his way to the office,
which has probability p. If he has N umbrellas at home, he will get wet if it doesn’t rain
on his way to the office and it rains on the way back home (this happens with probability
(1 —p)p). So on the long run, the proportion of journeys on which the professor gets wet is
given by

2p
1+ 5

mop + 7Np(l —p) =



Exercise 5 (Countable exponential races). Let I be a countable space and let Ty, k € I,
be independent exponential random variables with T}, ~ Exp(q;) with 0 < g := Yo7 qx < 00.
Set T' = infy, T),. Let K be the random variable with values in I that is equal to k& whenever
T =Ty and Tj > Ty, for j # k. Show that 7" and K are independent with 7" ~ Exp(q) and
P(K = k) = qi/q. Deduce that P(K = k for some k) = 1.

Solution. We have K = k if T}, < T} for all j # k. By the total probability formula, we have

P(K =kand T > t) =P(T, >t and T; > T}, for all j # k)
:/ qre” " P(T; > s for all j # k)ds
t
[ e T v
t j#k
:/ qre” ¥ds = ke gt
t q

Hence we have that P(K = k for some k) = 1 and 7" and K have the claimed joint distribution.

Exercise 6 (General construction of Markov processes). Let us consider a countable
state space F and an array of positive numbers ()\i,j)i’jeE;i# with > cp. i Aijj < oo for all
i € E. We recursively define a continuous time stochastic process (X (t))¢>0 on E starting at
ig € E as follows:

(i). Define Tp = 0 and set X (Tp) = ig € F;

(ii). For n € N: suppose we know 7,1 and X(7,—1) = in—1. Independently of the
previous steps, generate independent exponential random variables FEq, Fo,... with
E; ~ Exp(X\;, ;). Define T,, = T,,_1 + infjey Ej and 4, = argmin cpFj, that is,
the (random) index of the exponential variable that is the smallest. Then put

X(t) _ Tn—1 for t € [Tn_l,Tn)
in for t =1T,,.

a) What is the distribution of the time between the jumps of the process (X (t))i>07
b) Let ]?’ij be the probability
By = B(X(Tn) = j | X(Tur = ).
Find the matrix P = (ﬁij)i,jeE-
c) Show that (X (t))¢>0 is a homogeneous Markov process.

Solution. a) We are looking for the distribution of the waiting time between two jumps,
i.e. the distribution of S,, = T,, — T),_1, by definition this is defined as

= inf F,.
Sn jen

According to exercise 1, we have that S, ~ Exp(32721 Ai,_, 5)-



b) We know by a) that the waiting time between two jumps of the process is a n exponential
random variable arising as the minimum of an countable exponential race. The first
exercise gives us additionally that

Y
Zk7&i Ai,k

c) We have to show that (X (t)):>0 is a Markov process, that is

Py =P(X(T) = j | X(T-1) =)

P(Xy =7 [{Xp,r <5, Xs=i}) =P(Xy =j | Xs =1).

Since we condition on {X,,r < s, Xy =i}, there exists a time m (depending on w) such
that {X,,r < s, Xs =1} = {(Xy)r<s, Tm—1 < s < T, and Xy = i}. First, note that by
construction the process before time 7,,,_1 is irrelevant for determining this probability:

P(X; =7 |{X,,r<sand T;,—1 < s < Ty, and X5 = i})
=P(Xy =4 | {Xy,Tn—1 <r<sand T, > s and X; =i}).

Then memorylessness property of the exponential random variables implies that for
Sm =Tm —Tim

oo

Sm ~ Sm — (8 — Tm—l) ~ Emp(z )\m’),

j=1
i.e. knowing that the exponential rate exceeds s — T,,,_1 is irrelevant for determining
the current transitions probabilities. Moreover, since X7, = X, by definition of 7,,—1
and T,,, {Xs = i} is the only relevant information for the next evolution of the process
based on information contained in {X,,T,,—1 <r < sand T, > s and X; =i}. Thus

P(X:=j | {Xr,Tn-1 <r<sand T, >sand X; =i}) =P(Xy =j | Xs =1)
this finishes the proof.

Definition (The Q-matrix). One way of thinking about the evolution of the Markov process
(X (t))t>0 is in terms of its Q-matrix, which is known as the generator of the process. A matrix
Q = (¢ij)ijcE is a Q-matrix if it satisfies

(i). —o0 < gii <0 for all i € E;
(ii). 0 < g5 < oo for all i # j;

The @-matrix of the Markov process (X(t));>0 as constructed above is given by ¢; =
— E]-#Z- >\i,j for i € E, and qij = >\ij for j # i.

Exercise 7. In a population of size IV, a rumor is begun by a single individual who tells
it to everyone he meets; they in turn pass the rumor to everyone they meet, once a person
has passed the rumor to somebody he exits the system. Assume that each individual meets
another randomly with exponential rate 1/N. Let X(¢), ¢ > 0 be the number in F =
{1,..., N} of people who know the rumor at time ¢.



a) Draw a graph to visualize the chain. Write down the @-matrix of the chain.
b) How long does it take in average until everyone knows the rumor if X (0) = 17

Solution. a) The Q-matrix has the form

_N-1 N-1 0
]]VV—Q N-—-2

0 -5 ¥ 0

: : 0

1 1

0 o o -1 1

0 0 0 0 0

b) We need to compute Ei(T) where Ty = inf{t : X(Tx) = N}. Remark that T is just
a sum of exponential random variables

where E; ~ Exp(£5%), So that

E\(Tn) =)

=1

~ Nlog N.
N—i 8

You could notice that this is exactly the continuous time version of the coupon’s collector
model.

Exercise 8. For i € N, let F; be independent copies of an exponential random variable of
parameter \. We let T,, := F1 +--- + E,, and

n=1

The process (N(t)),~ is called a homogeneous Poisson process with intensity A. Let Tp = 0
and we say that 17,75,T3,... are the successive arrival times of the Poisson process, and E,,
the intervals T, — T,,_1.

(i). Show that T, follows an Erlang law with parameters n and A having density:

an(t) = (TL — 1)| e_At :H-{t>0}'

(ii). Show that, Vt > 0, N(t) follows a Poisson law with parameter A, i.e.

()P -
PN =) =M k=012,



Solution. (i). We proceed by induction on n. For n = 1, T follows an exponential law
with parameter A\, which is equivalent to an Erlang law of parameter 1 and A. Suppose
that T,, ~ Erlang(n, \). Remark that E, 1 ~ Fxp()) is independent of T,,. For ¢t > 0,
we have

FTn+1(t) =P(Toy1 <t) =P(Th + Eny1 <t) = /OOO P(T, + Ent1 <t | Ty = u) fr, (u)du
t t
— [ BB <t - ) wdu= [ Fr,, (¢ - ) fr, (w)du.
0 0
Implying that
d t
Fra(®) = 5 [ (1= fr, ()
N / t (- e‘A(t‘“))an(U)), du+ (1 —e ) fr, (1)
0

t n
:/ )\e—A(t—u)Ai‘ un—l e—)\udu
0 !

(n—1)
_ )\n+1 6—)\15 tun—ldu
N (n — 1)' 0
n! ’

(ii). By definition of (N(¢))¢>0 and of the arrival times 7T;, we know that

Fr,.,(t) = / (1 — e M) f (w)du = Fr, (1) —/ e M- A ; u" e M
0 0 (n—1
A" n =Xt
= Fr,(t) - o t"e

P(N(t) =n) =P(N(t) >n) —P(N(t) >n+1)
N Y L = SV 0N L v 1))
B L D Bl e s

that is N(t) ~ Poi(\t).



